skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hill, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe a pedagogical study in which we designed and implemented a module for undergraduate Management Information Systems (MIS) students, aimed at preparing them for an increasingly AI-impacted business environment and society. We developed a learning module that taps their inherent motivation to make a meaningful difference, challenging them to ideate applications of AI for social good (AI4SG), focused specifically on sustainability. We piloted the module in an existing introductory MIS course, first establishing a range of fundamental AI capabilities through hands-on demos and study cases. Then, with instructor guidance, the student teams, working in a social entrepreneurship "start-up" context, identified sustainability challenges impacting their own communities and worked together to propose and pitch AI-powered solutions. The results suggest that students find this approach deepened their understanding of sustainability issues in their communities, improved their knowledge of how AI could address social issues, and improved their confidence in their ability to innovate. 
    more » « less
  2. Eddy covariance serves as one the most effective techniques for long-term monitoring of ecosystem fluxes, however long-term data integrations rely on complete timeseries, meaning that any gaps due to missing data must be reliably filled. To date, many gap-filling approaches have been proposed and extensively evaluated for mature and/or less actively managed ecosystems. Random forest regression (RFR) has been shown to be stable and perform better in these systems than alternative approaches, particularly when filling longer gaps. However, the performance of RFR gap filling remains less certain in more challenging ecosystems, e.g., actively managed agri-ecosystems and following recent land-use change due to management disturbances, ecosystems with relatively low fluxes due to low signal to noise ratios, or for trace gases other than carbon dioxide (e.g., methane). In an extension to earlier work on gap filling global carbon dioxide, water, and energy fluxes, we assess the RFR approach for gap filling methane fluxes globally. We then investigate a range of gap-filling methodologies for carbon dioxide, water, energy, and methane fluxes in challenging ecosystems, including European managed pastures, Southeast Asian converted peatlands, and North American drylands. Our findings indicate that RFR is a competent alternative to existing research standard gap-filling algorithms. The marginal distribution sampling (MDS) is still suggested for filling short (< 12 days) gaps in carbon dioxide fluxes, but RFR is better for filling longer (> 30 days) gaps in carbon dioxide fluxes and also for gap filling other fluxes (e.g. sensible heat, latent energy and methane). In addition, using RFR with globally available reanalysis environmental drivers is effective when measured drivers are unavailable. Crucially, RFR was able to reliably fill cumulative fluxes for gaps > 3 moths and, unlike other common approaches, key environment-flux responses were preserved in the gap-filled data. 
    more » « less
  3. Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the global carbon cycle, controlling both long-term trends and interannual variation. These insights originate from land surface models (LSMs) that have not been extensively calibrated and evaluated for water-limited ecosystems. We need to learn more about dryland carbon dynamics, particularly as the transitory response and rapid turnover rates of semi-arid systems may limit their function as a carbon sink over multi-decadal scales. We quantified aboveground biomass carbon (AGC; inferred from SMOS L-band vegetation optical depth) and gross primary productivity (GPP; from PML-v2 inferred from MODIS observations) and tested their spatial and temporal correspondence with estimates from the TRENDY ensemble of LSMs. We found strong correspondence in GPP between LSMs and PML-v2 both in spatial patterns (Pearson’s r = 0.9 for TRENDY-mean) and in inter-annual variability, but not in trends. Conversely, for AGC we found lesser correspondence in space (Pearson’s r = 0.75 for TRENDY-mean, strong biases for individual models) and in the magnitude of inter-annual variability compared to satellite retrievals. These disagreements likely arise from limited representation of ecosystem responses to plant water availability, fire, and photodegradation that drive dryland carbon dynamics. We assessed inter-model agreement and drivers of long-term change in carbon stocks over centennial timescales. This analysis suggested that the simulated trend of increasing carbon stocks in drylands is in soils and primarily driven by increased productivity due to CO 2 enrichment. However, there is limited empirical evidence of this 50-year sink in dryland soils. Our findings highlight important uncertainties in simulations of dryland ecosystems by current LSMs, suggesting a need for continued model refinements and for greater caution when interpreting LSM estimates with regards to current and future carbon dynamics in drylands and by extension the global carbon cycle. 
    more » « less